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Abstract 12 

Fluid flow in a charged porous medium generates electric potentials called Streaming 13 

potential (SP). The SP signal is related to both hydraulic and electrical properties of the soil. 14 

In this work, Global Sensitivity Analysis (GSA) and parameter estimation procedures are 15 

performed to assess the influence of hydraulic and geophysical parameters on the SP signals 16 

and to investigate the identifiability of these parameters from SP measurements. Both 17 

procedures are applied to a synthetic column experiment involving a falling head infiltration 18 

phase followed by a drainage phase.  19 

GSA is used through variance-based sensitivity indices, calculated using sparse Polynomial 20 

Chaos Expansion (PCE). To allow high PCE orders, we use an efficient sparse PCE algorithm 21 

which selects the best sparse PCE from a given data set using the Kashyap Information 22 

Criterion (KIC). Parameter identifiability is performed using two approaches: the Bayesian 23 

approach based on the Markov Chain Monte Carlo (MCMC) method and the First-Order 24 

Approximation (FOA) approach based on the Levenberg Marquardt algorithm. 25 

GSA results show that at short times, the saturated hydraulic conductivity  SK  and the 26 

voltage coupling coefficient at saturation  satC  are the most influential parameters, whereas, 27 

at long times, the residual water content  r , the Mualem-van Genuchten parameter  n  and 28 

the Archies’s saturation exponent  an  become influential with strong interactions between 29 

them. The Mualem-van Genuchten parameter    has a very weak influence on the SP 30 

signals during the whole experiment. 31 

Results of parameter estimation show that, although the studied problem is highly nonlinear, 32 

when several SP data collected at different altitudes inside the column are used to calibrate the 33 

model, all hydraulic ( SK , r ,  and n ) and geophysical ( an  and satC ) parameters can be 34 

reasonably estimated from the SP measurements. Further, in this case, the FOA approach 35 
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provides accurate estimations of both mean parameter values and uncertainty regions. 36 

Conversely, when the number of SP measurements used for the calibration is strongly 37 

reduced, the FOA approach yields accurate mean parameter values (in agreement with 38 

MCMC results) but inaccurate and even unphysical confidence intervals for parameters with 39 

large uncertainty regions. 40 

 41 

Keywords 42 

Drainage experiment, Streaming Potential, Global Sensitivity Analysis, Markov chain Monte 43 

Carlo, parameter estimation.   44 
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1. Introduction 45 

Flow through a charged porous medium can generate an electric potential (Zablocki, 1978; 46 

Ishido and Mizutani, 1981; Allegre et al., 2010; Jougnot and Linde, 2013), called Streaming 47 

Potential (SP). The SP signals play an important role in several applications related to 48 

hydrogeology and geothermal reservoir engineering as they are useful for examining 49 

subsurface flow dynamics. During the last decade, surface SP anomalies have been widely 50 

used to estimate aquifers hydraulic properties (Darnet et al., 2003). Interest on SP is 51 

motivated by its low–cost and high sensitivity to water flow. Either coupled or uncoupled 52 

approaches can be used for hydraulic parameter estimation from SP signals (Mboh et al., 53 

2012). In the uncoupled approach, Darcy velocities (e.g., Jardani et al., 2007; Bolève et al., 54 

2009) are obtained from tomographic inversion of SP signals and then used for the calibration 55 

of the hydrologic model. In the coupled approach, anomalies related to the tomographic 56 

inversion are avoided by inverting the full coupled hydrogeophysical model (Hinnell et al., 57 

2010). 58 

The SP signals have been widely studied in saturated porous media (Bogoslovsky and Ogilvy, 59 

1973; Patella, 1997; Sailhac and Marquis, 2001; Richards et al., 2010; Bolève et al., 2009, 60 

among others). Fewer studies focused on the application of the SP signal in unsaturated flow 61 

despite the big interest for such nonlinear problems (Linde et al., 2007; Allegre et al., 2010; 62 

Mboh et al., 2012; Jougnot and Linde, 2013). Hence, in this work we are interested in the SP 63 

signals in unsaturated porous media. Our main objective is to investigate the usefulness of the 64 

SP signals for the characterization of soil parameters. To this aim, we evaluate the impact of 65 

uncertain hydraulic and geophysical parameters on the SP signals and assess the identifiability 66 

of these parameters from the SP measurements. 67 

The impact of soil parameters on SP signals is investigated using Global Sensitivity Analysis 68 

(GSA). This is a useful tool for characterizing the influential parameters that contribute the 69 
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most to the variability of model outputs (Saltelli et al.,1999; Sudret, 2008) and for 70 

understanding the behavior of the modeled system. GSA has been applied in several areas, as 71 

for risk assessment for groundwater pollution (e.g., Volkova et al., 2008), non-reactive 72 

(Fajraoui et al., 2011) and reactive transport experiments (Fajraoui et al., 2012; Younes et al., 73 

2016), for unsaturated flow experiments (Younes et al., 2013), natural convection in porous 74 

media (Fajraoui et al., 2017) and seawater intrusion (Rajabi et al., 2015; Riva et al., 2015). To 75 

the best of our knowledge, GSA has never been used for SP signals in unsaturated porous 76 

media. Hence, in the first part of this study, GSA is performed on a conceptual model inspired 77 

from the laboratory experiment of Mboh et al. (2012) where SP signals are measured at 78 

different altitudes in a sandy soil column during a falling-head infiltration phase followed by a 79 

drainage phase. Four uncertain hydraulic parameters (saturated hydraulic conductivity SK , 80 

residual water content r  and fitting Mualem-van Genuchten parameters   and n ) and two 81 

geophysical (Archies’s saturation exponent an  and voltage coupling coefficient at saturation 82 

satC ) parameters are investigated. GSA of SP signals is performed by computing the variance-83 

based sensitivity indices using Polynomial Chaos Expansion (PCE). To reduce the number of 84 

PCE coefficients while maintaining high PCE orders, we use the efficient sparse PCE 85 

algorithm developed by Shao et al. (2017) which selects the best sparse PCE from a given 86 

data set using the Kashyap Information Criterion (KIC). 87 

In the second part of this study, we investigate the identifiability of hydro-geophysical 88 

parameters from SP measurements. To this aim, parameter estimation is performed using two 89 

different approaches. The first approach is a Bayesian approach based on the Markov Chain 90 

Monte Carlo (MCMC) method. MCMC has been successfully used in various inverse 91 

problems (e.g., Vrugt et al., 2003, 2008; Arora et al., 2012; Younes et al., 2017). The MCMC 92 

method yields an ensemble of possible parameter sets that satisfactorily fit the available data. 93 
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These sets are then employed to estimate the posterior parameter distributions and hence the 94 

optimal parameter values and the associated 95% Confidence Intervals (CIs) in order to 95 

quantify parameter’s uncertainty. The second inversion approach is the commonly used First-96 

Order Approximation (FOA) approach based on the standard Levenberg-Marquardt 97 

algorithm. Besides, two scenarios are considered to investigate the effect of lack of data on 98 

the parameter identifiability. In the first scenario, SP data collected from sensors at five 99 

different locations are taken into account for the calibration. In the second scenario; only the 100 

SP data from one sensor are used for model calibration. 101 

The present study is decomposed as follows. Section 2 presents the hydrogeophysical model 102 

and the reference solution. Section 3 reports on the GSA results of SP signals. Then, Section 4 103 

discusses results of parameter estimation with both MCMC and FOA approaches for the two 104 

investigated scenarios. 105 

2. Mathematical and conceptual models  106 

2.1. Mathematical model 107 

The total electrical current density j  [A m
-2

] is determined from the generalized Ohm’s law 108 

as follows: 109 

 s    j j  (1) 110 

where   [V] is the streaming potential, sj  [A m
-2

] is the streaming current density and   [S 111 

m
-1

] is the electrical conductivity distribution assumed isotropic. 112 

Hence, the conservation equation ( . 0 j ) writes  113 

  . . s    j  (2) 114 

Besides, the electrical conductivity distribution can be estimated using the saturation 115 

w sS    as follows (Mboh et al., 2012) 116 
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 an

sat wS   (3) 117 

where sat  is the electric conductivity at saturation [S m
-1

] and an  is the Archies’s saturation 118 

exponent (Archie, 1942). 119 

The streaming current density sj  can be related to the Darcy velocity q  [cm min
-1

] by (Linde 120 

et al., 2007 ; Revil et al., 2007)  121 

 s sat sat w

s

g
C S

K




 
  
 

j q  (4) 122 

where sK  is the saturated hydraulic conductivity [cm min
-1

],   is the water density [kg m
-3

], 123 

g  is the gravitational acceleration [m s
-2

] and satC  is the voltage coupling coefficient at 124 

saturation. 125 

Hence, the combination of the previous equations (1-4) leads to the following partial 126 

differential equation governing the SP signals: 127 

  . .an sat w
w

s

gC S
S

K




 
    

 
q  (5) 128 

On the other hand, the flow through an unsaturated soil column can be modelled by the one-129 

dimensional Richard’s equation: 130 

       s

s

h
c h S . K h h z

t t

 



  
       

  
 (6) 131 

where h [cm] is the pressure head; z [cm] is the depth (downward positive); sS  (-) is the 132 

specific storage; s  [cm
3
.cm

-3
] and   are the saturated and actual water contents, 133 

respectively;  c h  [cm
-1

] is the specific moisture capacity; and  K h [L.T
-1

] is the hydraulic 134 

conductivity. The standard models of Mualem (1976) and Van Genuchten (1980) are used to 135 

relate pressure head, hydraulic conductivity and water content, 136 
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 (7) 137 

where Se (-) is the effective saturation, r  [L
3
.L

-3
] is the residual water content, sK  [cm.min

-1
] 138 

is the saturated hydraulic conductivity, 1 1m n  ,   [cm
-1

] and n  [-] are the Mualem van-139 

Genuchten shape parameters.  140 

2.2. Conceptual model and numerical solution  141 

The test case considered in this work is similar to the laboratory experiment developed in 142 

Mboh et al. (2012) involving a falling-head infiltration phase followed by a drainage phase. 143 

This experiment is representative of several laboratory SP experiments (Linde et al., 2007; 144 

Allegre et al., 2010; Jougnot and Linde, 2013, among others). Quartz sand is evenly packed in 145 

a plastic tube with an internal diameter of 5 cm to a height of sL =117.5 cm. The column is 146 

initially saturated with a ponding of wL =48 cm above the soil surface. Five sensors allowing 147 

SP measurements are installed at respectively 5, 29, 53, 77, and 101 cm from the surface. The 148 

column has a zero pressure head maintained at its bottom. At the top of the column, the 149 

boundary condition corresponds to a Dirichlet condition with a prescribed pressure head 150 

condition during the falling-head phase followed by a Neumann condition with zero 151 

infiltration flux during the drainage phase. During the falling-head phase, the prescribed 152 

pressure head toph  has an exponential behavior driven by the saturated conductivity 153 

 
s

s

K
t

L

top s w sh L L e L


   . The falling-head phase remains until the ponding vanishes at the 154 

critical time lns s
c

s s w

L L
t

K L L

 
   

 
. 155 
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The sandy soil has typical MVG hydraulic parameters with (according to Mboh et al., 2012) 156 

29.7sK   cm/h, 0.43s   cm
3
/cm

3
, 0.045r  cm

3
/cm

3
, 0.145  cm

-1
 and 2.68n  . The 157 

voltage coupling coefficient at saturation is 72.910satC    V/Pa and the Archies’s saturation 158 

exponent is 1.6an  .  159 

Based on these hydraulic and geophysical parameters, a reference solution is obtained using a 160 

uniform mesh of 235 cells of 0.5 cm length. The system of equations (5)-(6) is solved with the 161 

standard finite volume method. The temporal discretization is performed with the method of 162 

lines (MOL) which is suitable for strongly nonlinear systems. Indeed, the MOL allows high 163 

order temporal integration methods with formal error estimation and control (Miller et al., 164 

1998; Younes et al., 2009; Fahs et al., 2009, 2011). 165 

Data are generated from the numerical model by sampling the SP signals every 10 min during 166 

1800 min. Figure 1 shows that the SP signals have an almost linear behavior in the saturated 167 

falling-head phase. During the drainage phase, they have a nonlinear behavior and approach 168 

the zero voltage for the dry conditions occurring toward the end of the experiment. The SP 169 

signals are noised with independent Gaussian random noises with a standard deviation of 2.73 170 

10
-5

 V. This noise level was obtained by Mboh et al. (2012) from laboratory measurements. 171 

The noised data (Fig. 1) are used as “observations” in the calibration exercise. 172 

3. Global sensitivity analysis of SP signals  173 

3.1. GSA method  174 

The aim of GSA is to assess the effect of the variation of parameters on the model output 175 

(Mara and Tarantola, 2008). Such knowledge is important for determining the most influential 176 

parameters as well as their regions and periods of influence (Fajraoui et al., 2011). The 177 

sensitivity of a model to its parameters can be assessed using Variance-based sensitivity 178 

indices. These indices evaluate the contribution of each parameter to the variance of the 179 
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model (Sobol’, 2001). The polynomial chaos theory (Wiener, 1938), has been largely used to 180 

perform variance-based sensitivity analysis of computer models (see for instance, Sudret, 181 

2008; Blatman and Sudret, 2010; Fajraoui et al., 2012; Younes et al., 2016; Shao et al., 2017; 182 

Mara et al., 2017). PCE-based sensitivity analysis is efficient since the Sobol' indices can be 183 

directly obtained from the PCE coefficients without any additional computation (Fajraoui et 184 

al., 2011). 185 

Let us consider a a mathematical model with a random response  ξf  which depends on d  186 

independent random parameters  1 2
ξ

d
   , , ..., . With PCE,  ξf  is expanded using a set 187 

of orthonormal multivariate polynomials (up to a polynomial degree p): 188 

    ξ ξ
p

f s 

 

   (8) 189 

where 
1...

d

d      is a d
th

-dimensional index. The s  ’s are the polynomial coefficients 190 

and  ’s are the generalized polynomial chaos of degree 
1

d

ii
   , such as Hermite, 191 

Legendre and Jacobi polynomials, for instance. In this work, Legendre polynomials are 192 

employed because uniform priors are considered for the parameters. 193 

Equation (8) is similar to an ANOVA (Analysis Of Variance) representation of the original 194 

model (Sobol’ 1993), from which it is straightforward to express  ξV f   , the variance of 195 

 ξf  as the sum of the partial contribution of the inputs, 196 

   2
ξV f s



    , (9) 197 

The first-order sensitivity index iS  and the total sensitivity index iST  are defined by 198 

 
 

 
 0,1

ξ

ξ

i

i

V E f
S

V f

  
   
  

, (10) 199 
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 

 
 0,1

ξ ξ

ξ

i

i

E V f
ST

V f

  
   
  

, (11) 200 

where ξ =ξ
i i


-

\ , E     is the conditional expectation operator and V     the conditional 201 

variance. iS  measures the amount of variance of  ξf  due to i  alone, while i iST S  202 

measures the amount of all contributions of i  to the variance of  ξf , including its 203 

cooperative non-linear contributions with the other parameters 
j

 . The input/output 204 

relationship is said additive when , 1,..,i iST S i d   , and in this case 
1

1
d

ii
S


 . 205 

In the sequel, a PCE is constructed for each SP signal at each observable time. The number of 206 

coefficients for a full PCE representation is    ! ! !P d p d p  . The evaluation of the PCE 207 

coefficients requires at least P  simulations of the nonlinear hydrogeophysical model. Note 208 

that P  increases quickly with the order of the PCE and the number of parameters. Hence, 209 

several sparse PCE representations, where only the significant coefficients are sought, have 210 

been proposed in the literature in order to reduce the computational cost of the estimation of 211 

the Sobol indices. For instance, Blatman and Sudret (2010) developed a sparse PCE 212 

representation using an iterative forward-backward approach based on non-intrusive 213 

regression. Fajraoui et al., (2012) developed a technique where only the sensitive coefficients 214 

(that affect significantly model variance) are retained in the PCE. Recently, Shao et al., 215 

(2017), developed an algorithm based on Bayesian Model Averaging (BMA) to select the best 216 

sparse PCE from a given data set using the Kashyap Information Criterion (KIC) (Kayshap, 217 

1982). The main idea of this algorithm is to increase progressively the degree of an initial 218 

PCE and compute the KIC until obtaining a satisfactory representation of model responses. 219 

This algorithm is used hereafter to compute the sensitivity indices of the SP signals. 220 

 221 
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3.2. GSA results  222 

The SP responses are considered for uniformly distributed parameters over the large intervals 223 

shown in Table1. These intervals include the reference values reported in Mboh et al. (2012). 224 

The sensitivity indices of the six input parameters ( , , , , , )s r a satK n n C 
 
are estimated using an 225 

experimental design formed by 122 4096N    parameter sets. The order of the sparse PCE is 226 

automatically adapted for each observable time and location. For some observable times, the 227 

PCE is highly sparse; it reaches a degree of 31 but contains only 112 nonzero coefficients. 228 

Figure 2 depicts the temporal distribution of the streaming potential variance, represented by 229 

the bleu curve, and the relative contribution of the parameters, represented by the shaded area. 230 

This figure corresponds to the temporal ANOVA decomposition for the sensor 1 (at 5 cm 231 

from the soil surface) and for the sensor 4 (at 77 cm from the soil surface). Interactions 232 

between parameters are represented by the blank region between the variance curves and the 233 

shaded area. Note that because Dirichlet boundary condition with zero SP is maintained at the 234 

outlet boundary, the variance of the SP signal is zero at the bottom and reaches its maximum 235 

value near the soil surface. Hence, the variance is higher for the first sensor, located at 5 cm 236 

from the soil surface (Figure 2a) than for the sensor 4 located at 77 cm (Figure 2b).  237 

The SP signals at different altitudes exhibit similar behavior (Figure 2). In the following, we 238 

comment on the results of sensor 1 (Figure 2a). Because sK  varies between 0.1 [cm min
-1

] 239 

and 2 [cm min
-1

], the saturated falling-head phase remains until the ponding vanishes at 240 

lns s
c

s s w

L L
t

K L L

 
   

 
. Depending on the value of sK  (see Table 1), ct varies between 1 20t 241 

min and 2 403t   min. Thus, in Figure 2a, we can see that during a first time period  1t t , 242 

the SP signal is strongly influenced by the value of the parameter satC . The first order and 243 

total sensitivity indices at 10t  min (Table 2a) confirm that only the saturated parameters sK  244 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-730
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 January 2018
c© Author(s) 2018. CC BY 4.0 License.



13 

 

and satC  are influential. satC  is about 17 times more influential than sK . As expected, the 245 

remaining parameters have no influence during the first period. The total variance is 0.72 mv 246 

and there is no interaction between the two parameters sK  and satC  since i iST S  for both 247 

and 
1

1
d

ii
S


 .  248 

During the second period  1 2t t t  , the flow is either saturated or unsaturated depending on 249 

the value of sK . Figure 2a shows that the variance of the SP signal exhibits its maximum 250 

value around 2.4 mv with strong influences of the parameters sK  and satC  and weak 251 

interactions between them (small blank region between the variance curve and the shaded 252 

area). These results are confirmed by the sensitivity indices calculated at 70t   min and 253 

reported in Table 2a for the sensor 1. Both first order and total sensitivity indices indicate that 254 

sK  is the most influential parameter. The second influential parameter is satC  which has a 255 

total sensitivity index about 12 times less than sK . The parameter   is irrelevant since its 256 

total sensitivity index is 109 times less than sK  and its partial variance is 257 

0.01i i TV S V mv    which is less than the 95% confidence interval associated to the SP 258 

measurement ( 0.055mv ). The total variance at 70t   min is calculated to be 2.17mv  and 259 

the output/input relationship is close to be additive since 
1

0.94
d

ii
S


  which means that 260 

interactions between parameters exist but are not significant.  261 

During the third period  2t t , the variance of the SP signal reduces to 0.3 mv (Figure 2a) 262 

and significant interactions are observed between parameters (large blank region between the 263 

shaded area and the variance curve). Table 2a shows that for 800t   min, which corresponds 264 

to dry conditions, the total variance is 0.22. First-order sensitivity indices are very small, 265 

except for r . The latter is highly influential since it has a significant first-order sensitivity 266 
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index ( 0.27iS  ) and a more significant total- sensitivity index ( 0.74iST  ). The parameters 267 

satC  and sK  are irrelevant, they have very small first-order and total sensitivity indices. 268 

Further, strong interactions are observed between the parameters since the sum of the first-269 

order indices is far from 1 (
1

0.47
d

ii
S


 ). The total sensitivity indices are significantly 270 

different from first-order sensitivity indices for almost all parameters. For instance, the ratio 271 

between these two indices is around 4 for  , 5 for an  and 7 for n . The total sensitivity index 272 

of   remains small (0.065), whereas, significant total sensitivity indices are obtained for n  (273 

0.27iST  ) and an  ( 0.47iST  ) which indicates that these two parameters are influential 274 

(although their first order sensitivity indices are small) because of interaction between 275 

parameters.  276 

Figure 2b shows similar behavior for the sensor 4 located at 77 cm from the soil surface. The 277 

results in Table 2b indicate that the total variance observed at t = 10, 70 and 800 min are 278 

around 8 times less than for the sensor 1. For the first time period, the first and total 279 

sensitivity indices are identical to those observed for the sensor 1 since saturated conditions 280 

occur inside the whole column and the same effect of sK  and satC  can be observed whatever 281 

the location inside the column. For the second time period, the sensitivity indices for sensor 4 282 

(Table 2b) are similar to those observed for the sensor 1. However, the results for the third 283 

time period show an improvement of the relevance of the parameter   with an increase of 284 

both first and total sensitivity indices. Indeed, compared to the results of the sensor1, both 285 

first order and total sensitivity indices have tripled. Moreover, the total sensitivity index for   286 

( 0.22iST  ) becomes close to that of n  ( 0.24iST  ).  287 

In summary, the GSA applied to SP signals identifies the influential parameters and their 288 

periods of influence and show that  289 
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- the parameter satC  is highly influential during the first time period  1t t  where no 290 

interactions are observed between parameters; 291 

- the parameter sK  is highly influential during the second time period  1 2t t t   where 292 

small interactions occur between parameters; 293 

- the parameters r , n  and an  are influential during the third time period  2t t  where 294 

dry conditions occur. During this period, strong interactions take place between 295 

parameters; 296 

- the parameter   has no influence on the SP signals during the two first periods and 297 

presents a very small influence ( 0.015iS   and 0.065iST  ) during the third period 298 

on the sensor 1 (near the surface of the column); 299 

- the relevance of the parameter   improves with the distance from the soil surface, 300 

although the total variance diminishes with respect to this distance. The influence of 301 

  becomes significant ( 0.22iST  ) on the sensor 4 (located at 77 cm from the soil 302 

surface) during the third period.  303 

4. Parameter estimation  304 

4.1. MCMC and FOA approaches  305 

Calibration of computer models is an essential task since some parameters (like the Mualem 306 

van-Genuchten shape parameters   and n ) cannot be directly measured. In such an exercise, 307 

the unknown model parameters are investigated by facing the model responses to the 308 

observations. Recently, Mboh et al. (2012) showed that inversion of SP signals can yield 309 

accurate estimate of the saturated hydraulic conductivity SK , the MVG fitting parameters   310 

and n  and the Archie’s saturation exponent ( an ). Moreover, they showed that the quality of 311 

the estimation was comparable to that obtained from the calibration of pressure heads. In their 312 
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study, Mboh et al. (2012) used the FOA approach with the Shuffled Complex Evolution 313 

optimization algorithm SCE-UA (Duan et al., 1993).  314 

As important as the determination of the optimal parameter sets are the associated 95% 315 

Confidence Intervals (CIs) to quantify uncertainty on the estimated values. The determination 316 

of CIs is not straightforward if the observed model responses are highly nonlinear functions of 317 

model parameters (Christensen and Cooley, 1999). In the sequel, parameter estimation is 318 

performed using two approaches: the popular FOA approach and the Bayesian approach 319 

based on the Markov chain Monte Carlo (MCMC) sampler. The MCMC method is model-320 

free since no assumption concerning model linearity is required for its implementation. Many 321 

improvements have been proposed in the literature to accelerate the MCMC convergence rate 322 

(e.g., Haario et al., 2006; ter Braak and Vrugt, 2008; Dostert et al., 2009, among others). All 323 

MCMC samplers rely on the Metropolis-Hasting algorithm (Metropolis et al., 1953; Hastings, 324 

1970). It proceeds as follows: 325 
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i. Choose an initial candidate  0 0 0,x ξ  formed by the initial estimate of the 326 

parameter set 
0

ξ  and the hyperparameter 0  and a proposal distribution q  that 327 

depends on the previous accepted candidate. 328 

ii. A new candidate  ,i i ix ξ  is generated from the current one 
1

x
i

 with the 329 

generator  1i iq 
x x  associated with the transition probability  | ,ξ y

i

mesp  . 330 

iii. Calculate  | ,ξ y
i

mesp   and compute the ratio 
   
   

1

1 1

| ,

| ,

ξ y x x

ξ y x x

i i i

mes

i i i

mes

p q

p q








 
 . 331 

Additionally, draw a random number  0,1u  from a uniform distribution. 332 

iv. If u  , then accept the new candidate, otherwise it is rejected.  333 

v. Resume from (ii) until the chain  0 ,...,x x
k

 converges or a prescribed number of 334 

iterations maxi  is reached. 335 

Recently, Laloy and Vrugt (2012) developed the DREAM(ZS) MCMC sampler which runs 336 

multiple chains in parallel for a wider and quicker exploration of the parameter space. 337 

However, because of the large number of model evaluations required, the MCMC method 338 

remains rarely used compared to the FOA approach. Indeed, with FOA, the CIs are estimated 339 

once by assuming that the Jacobian remains constant within the CIs. This assumption was 340 

found to be reasonably accurate in nonlinear problems by Donaldson and Scnabel (1987). 341 

However, recently, several authors stated that parameter interdependences and model 342 

nonlinearities violate this assumption (see for instance, Vrugt and Bouten, 2002; Vurgin et al. 343 

2007; Gallagher and Doherty, 2007; Mertens et al., 2009; Kahl et al., 2015).  344 

In the following, both MCMC and FOA approaches are employed for the inversion of the 345 

highly nonlinear hydrogeophysical problem using SP measurements. 346 

 347 
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4.2. Parameter estimation results  348 

Hydrogeophysical parameters are estimated using the DREAM(ZS) MCMC sampler (Laloy 349 

and Vrugt, 2012). Independent uniform distributions are considered for model parameter 350 

priors and likelihood hyperparameters (see Table 1). The parameter posterior distribution 351 

writes: 352 

  
 

22

ξ
ξ y

N

mes

SS
p | , exp 




 

  
 

 (9) 353 

where         
2

1
ξ ξ

N k k

mes modk
SS y y


   is the sum of the squared differences between the 354 

observed  k

mesy  and modeled  k

mody  SP signals at time kt  for N  total number of SP 355 

observations. 356 

The DREAM(ZS) software computes multiple sub-chains in parallel to thoroughly explore the 357 

parameter space. Taking the last 25% of individuals (when the chains have converged) yields 358 

multiple sets used to estimate the updated parameter distributions and therefore the optimal 359 

parameter values and their CIs. In the sequel, the DREAM(ZS) MCMC sampler is used with 3 360 

parallel chains.  361 

We assume that the saturated water content has been initially measured with a fair degree of 362 

accuracy. However, instead of fixing its value (as in Kool et al. (1987), van Dam et al. (1994), 363 

Nützmann et al., (1998) among others), we assign to s  a Gaussian distribution to take into 364 

account associated uncertainty and its effect on the estimation of the rest of parameters. Hence 365 

a Gaussian distribution is assigned to s  with a mean value of 0.43 cm
3
.cm

-3 
and a 95% CI 366 

 0.41 0.45  cm
3
.cm

-3
. The rest of parameters are uniformly distributed over the ranges 367 

reported in Table 1. The standard deviation   is also considered unknown and is 368 

simultaneously estimated with the physical parameters. Two scenarios are considered: in the 369 

first scenario, SP data collected from the sensors located at the five locations are taken into 370 
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account for the calibration. In the second scenario; only the SP data from the first sensor 371 

located at 5 cm from the soil surface serve as conditioning information for model calibration. 372 

Results of the MCMC sampler are compared to those of FOA approach for both scenarios.  373 

3.1 Scenario 1: Inversion using all SP measurements  374 

Fig. 3 shows the results obtained with MCMC when the SP data of the five sensors are used 375 

for the calibration. The "on-diagonal" plots in this figure display the posterior parameter 376 

distributions, whereas the "off-diagonal" plots represent the correlations between parameters 377 

in the MCMC sample. Fig. 3 shows bell-shaped posterior distributions for all parameters. A 378 

strong correlation is observed between r  and an  ( 0.98r  ). 379 

From the obtained MCMC sample, it is straightforward to estimate the posterior 95% 380 

confidence interval of each parameter. The latter as well as the mean estimate value of each 381 

parameter obtained with both MCMC and FOA approaches are reported in Table 3. 382 

The results this table show that the parameters are well estimated from the SP measurements 383 

since (i) identified mean values are very close to the reference solution, (ii) all confidence 384 

intervals include the reference solution and (iii) the confidence intervals are rather narrow. 385 

The saturated parameters SK  and satC  are very well estimated (with CIs around 2%) because 386 

of data collected during the falling-head phase where only these two parameters are 387 

influential.  388 

The posterior CI of the parameter s  is similar to its prior CI. The parameter  is reasonably 389 

well estimated with a CI around 35%. Recall that this parameter had very small first-order and 390 

total sensitivity indices for sensor 1 but had more significant sensitivity indices for the sensors 391 

away from the soil surface (see results for sensor 4 in Table 2b). The parameter r  is 392 

estimated with a CI around 90% although it was highly influential for all sensors (for 393 

instance, a first-order sensitivity index of 0.27 and a total order of 0.74 for sensor 1). The 394 
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parameters n  and an  had similar GSA behavior with small first-order sensitivities 395 

(respectively 0.038 and 0.094 for sensor 1) and large total sensitivities (respectively 0.266 and 396 

0.4715 for sensor 1), however, the inversion shows that the parameter n  is well estimated 397 

with a CI less than 10% whereas the parameter an  is less well estimated with a CI around 398 

35%. These results suggest that GSA outcomes should be interpreted with caution in the 399 

context of parameter estimation since (i) a parameter which is not relevant for the model 400 

output in one sensor can be influential for another sensor and (ii) GSA does not presume on 401 

the quality of the estimation since two parameters with similar sensitivity indices can have 402 

different quality of estimation by the inversion procedure.  403 

Further, the results of Table 3 show that FOA and MCMC approaches yield similar mean 404 

estimated values. Moreover, very good agreement is observed between FOA and MCMC 405 

uncertainty bounds. Concerning the efficiency of the two calibration methods for this 406 

scenario, the FOA approach is by far the most efficient method since it requires only 95s of 407 

CPU time. The MCMC method was terminated after 15,000 model runs which required 408 

14,116s. The convergence was reached at around 10,000 model runs. The last 5,000 runs were 409 

used to estimate the statistical measures of the posterior distribution.  410 

3.2 Scenario 2: Inversion using only SP measurements near the surface 411 

In this scenario, the number of measurements used for the calibration is strongly reduced. 412 

Only SP measurements from sensor 1 (located at 5 cm blow de soil surface) are considered. 413 

The results of MCMC are plotted in the Fig. 4. The correlation observed between r  and an  414 

decreases slightly to 0.95r  . Almost bell-shaped posterior distributions are observed for all 415 

parameters except for the parameters r  and  . 416 

The results obtained with MCMC and FOA approaches depicted in Table 4 show that 417 
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- The FOA approach yields accurate mean estimated values similar to MCMC results 418 

for all parameters; 419 

- The MCMC and FOA mean estimated values are close to the reference solution and to 420 

the previous scenario. The maximum difference is observed for r  for which the 421 

mean estimated value with scenario 2 is 15% greater than for scenario 1 422 

- The MCMC CIs for the parameters SK , s , n  and satC  are close to the previous 423 

scenario. The parameters s  and n  are well estimated (CIs < 10%) and the 424 

parameters SK  and satC  are very well estimated (CIs   5%). 425 

- Due to the reduction of the number of data used for model calibration in the scenario 426 

2, the MCMC CIs for the parameters an ,   and r  are much larger than in the 427 

previous scenario. Indeed, compared to scenario1, the CI for an  and r  increases by 428 

around 60% whereas the CI of   is 3 times larger than for the scenario 1. 429 

- The FOA method yields accurate CIs for the parameters s , n , an  and satC  whereas it 430 

overestimates the CIs of r  (by 24%), SK  (by 100%) and   (by 427%). Unphysical 431 

uncertainty region (including negative values) is obtained for the parameter   432 

These results show that the FOA can fail to provide realistic parameter uncertainties and can 433 

yield larger CIs than their corresponding nonlinear MCMC counterpart. Indeed, the 434 

linearization in the FOA method assumes that the Jacobian remains constant across the CIs. 435 

This assumption was quite fulfilled for the first scenario in which a large number of 436 

measurements insured small uncertainty regions. However, the assumption is not fulfilled for 437 

some parameters of the current scenario because of the large uncertainty regions induced by 438 

the reduction of the number of SP measurements.  439 

Concerning the efficiency of the calibration methods, the FOA required approximately 174s 440 

of CPU time, the MCMC required much more runs to reach the convergence than in the 441 
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previous scenario. Indeed, the sampler was used with 50,000 runs (35,000 runs were 442 

necessary to reach the convergence).  443 

4. Conclusions 444 

In this work, a synthetic test case dealing with SP signals during drainage experiment has 445 

been studied. The test case is similar to the laboratory experiment developed in Mboh et al. 446 

(2012) involving a falling-head infiltration phase followed by a drainage phase. GSA and 447 

Bayesian parameter inference have been applied to investigate (i) the influence of hydraulic 448 

and geophysical parameters on the SP signals and (ii) the identifiability of hydro-geophysical 449 

parameters using only SP measurements. The GSA was performed using variance-based 450 

sensitivity indices which allow measuring the contribution of each parameter (alone or by 451 

interaction with other parameters) to the output variance. The sensitivity indices have been 452 

calculated using a PCE representation of the SP signals. To reduce the number of coefficients 453 

and explore PCE with high orders, we used the efficient sparse PCE algorithm developed by 454 

Shao et al. (2017) which selects the best sparse PCE from a given data set using the Kashyap 455 

Information Criterion (KIC). 456 

The GSA applied to SP signals showed that the parameters satC  and sK  are highly influential 457 

during the first period corresponding to saturated conditions. The parameters r , n  and an  458 

are influential when dry conditions occur. In such conditions, strong interactions take place 459 

between these parameters. The parameter   has a very small influence on the SP signals near 460 

the soil surface but its sensitivity increases with depth although the total variance decreases 461 

with depth. 462 

Parameter estimation has been performed using MCMC and FOA approaches. All hydraulic (463 

SK , r ,   and n ) and geophysical ( an  and satC ) parameters can be reasonably estimated in 464 

the first scenario when the whole SP data (measured at five different locations) are used as 465 
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conditioning information for the model calibration. The confrontation with GSA results shows 466 

that the latter should be interpreted with caution when used in the context of parameter 467 

estimation since (i) a parameter which is not relevant for the model output in one sensor can 468 

be influential for another sensor and (ii) GSA does not presume on the quality of the 469 

estimation since two parameters with similar sensitivity indices can have different quality of 470 

estimation by the inverse procedure (see for instance, parameters n  and an ). Furthermore, 471 

although the studied problem is highly nonlinear, the FOA approach provides accurate 472 

estimations of both mean parameter values and CIs in the first scenario and is by far much 473 

more efficient than the MCMC method. 474 

When the number of SP measurements used for the calibration is considerably reduced (lack 475 

of data), the MCMC inversion provides larger parameters’ uncertainty regions. The FOA 476 

approach yields accurate mean parameter values (in agreement with MCMC results) but 477 

inaccurate and even unphysical CIs for some parameters with large uncertainty regions. 478 

  479 
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List of table captions 480 

Table 1. Reference values, lower and upper bounds for hydraulic and geophysical parameters. 481 

Table 2. The first-order sensitivity index iS  and the total sensitivity index iST  for the SP 482 

signal at 5 cm and 77 cm below the soil surface at different times. 483 

Table 3: Estimated mean values (underlined), confidence intervals (CIs) and size of the 484 

posterior CIs (italic) with MCMC and FOA approaches for scenario 1.  485 

Table 4: Estimated mean values (underlined), confidence intervals (CIs) and size of the 486 

posterior CIs (italic) with MCMC and FOA approaches for scenario 2. 487 
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Parameters Lower bounds Upper bounds Reference values 

sK  [cm min
-1

] 0.1 2 0.495 

r  [cm
3
 min

-3
] 0 0.2 0.045  

  [cm
-1

] 0.01 0.2 0.145  

n  1.5 7 2.68  

an  [-] 1 3 1.6 

 710satC    [V/Pa] 2 4 2.9 

Table 1. Reference values, lower and upper bounds for hydraulic and geophysical parameters. 

 sK  r    n  
an  satC  

 a- sensor 1 (5 cm from the soil surface) 

 t=10 min (total variance = 0.72) 

iS   0.055 0 0 0 0 0.942 

iST   0.057 0 0 0 0 0.945 

 t=70 min (total variance = 2.17) 

iS   0.841 0.217 0.005 0.014 0.008 0.045 

iST   0.894 0.043 0.008 0.028 0.021 0.078 

 t=800 min (total variance = 0.224) 

iS   0.053 0.266 0.015 0.038 0.094 0.008 

iST   0.085 0.738 0.065 0.266 0.472 0.041 

 b- sensor 4 (77 cm from the soil surface) 

 t=10 min (total variance = 0.094) 

iS   0.055 0 0 0 0 0.942 

iST   0.057 0 0 0 0 0.945 

 t=70 min (total variance = 0.2744) 

iS   0.839 0.015 0.014 0.013 0.005 0.053 

iST   0.891 0.028 0.024 0.025 0.011 0.086 

 t=800 min (total variance = 0.224) 

iS   0.099 0.225 0.054 0.043 0.085 0.01 

iST   0.138 0.621 0.218 0.238 0.379 0.043 

Table 2. The first-order sensitivity index iS  and the total sensitivity index iST  for the SP 

signal at 5 cm and 77 cm below the soil surface at different times. 
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 MCMC FOA 

SK  

0.49  

(0.487-0.498) 

0.01 

0.49 

(0.487-0.497) 

0.01 

s  

0.43  

(0.41-0.45) 

0.04 

0.43  

(0.41-0.45) 

0.04 

r  

0.046 

(0.025-0.068) 

0.04 

0.046  

(0.026-0.066) 

0.04 

  

0.14  

(0.12-0.17) 

0.05 

0.14  

(0.12-0.16) 

0.04 

n  

2.64 

(2.54-2.77) 

0.23 

2.64  

(2.54-2.76) 

0.22 

an  

1.64 

(1.37-1.98) 

0.6 

1.64  

(1.38-1.90) 

0.5 

satC  

2.90 

(2.89-2.91) 

0.02 

2.90 

(2.89-2.91) 

0.02 

Table 3: Estimated mean values (underlined), confidence intervals (CIs) and size of the 

posterior CIs (italic) with MCMC and FOA approaches for scenario 1. 
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  MCMC FOA 

SK  

0.49  

(0.481-0.495) 

0.014 

0.49 

(0.474-0.503) 

0.029 

s  

0.43  

(0.41-0.45) 

0.04 

0.43  

(0.41-0.45) 

0.04 

r  

0.053 

(0.011-0.093) 

0.08 

0.053  

(0.002-0.103) 

0.1 

  

0.13  

(0.07-0.20) 

0.13 

0.13  

(-0.15-0.43) 

0.58 

n  

2.54 

(2.44-2.68) 

0.24 

2.56  

(2.44-2.68) 

0.24 

an  

1.82 

(1.36-2.41) 

1.05 

1.78  

(1.29-2.27) 

0.98 

satC  

2.89 

(2.88-2.91) 

0.03 

2.89 

(2.88-2.91) 

0.03 

Table 4: Estimated mean values (underlined), confidence intervals (CIs) and size of the 

posterior CIs (italic) with MCMC and FOA approaches for scenario 2. 
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List of figure captions 488 

Fig. 1. Reference SP signals. Solid lines represent the reference SP solution and dots represent 489 

the sets of perturbed data serving as conditioning information for model calibration. 490 

 491 

Figure 2. Time distribution of the SP variance at 5cm (a) and 77cm (b) depth. The shaded area 492 

under the variance curve represents the partial marginal contributions of the random input 493 

parameters; the contribution of interactions between parameters is represented by the blank 494 

region between the shaded area and the variance curve.  495 

 496 

Fig. 3: MCMC solutions when all SP data are considered for the calibration. The diagonal 497 

plots represent the inferred posterior probability distribution of the model parameters. The 498 

off-diagonal scatterplots represent the pairwise correlations in the MCMC drawing. 499 

 500 

Fig. 4: MCMC solutions when calibration is performed using only SP data located at 5 cm 501 

from the surface. The diagonal plots represent the posterior probability distribution of the 502 

parameters. The off-diagonal scatterplots represent the pairwise correlations in the MCMC 503 

drawing. 504 
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Fig. 1. Reference SP signals. Solid lines represent the reference SP solution and dots represent 

the sets of perturbed data serving as conditioning information for model calibration. 
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Figure 2. Time distribution of the SP variance at 5cm (a) and 77cm (b) depth. The shaded area 

under the variance curve represents the partial marginal contributions of the random input 

parameters; the contribution of interactions between parameters is represented by the blank 

region between the shaded area and the variance curve.  
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Fig. 3: MCMC solutions when all SP data are considered for the calibration. The diagonal 

plots represent the inferred posterior probability distribution of the model parameters. The 

off-diagonal scatterplots represent the pairwise correlations in the MCMC drawing. 
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Fig. 4: MCMC solutions when calibration is performed using only SP data located at 5 cm 

from the surface. The diagonal plots represent the posterior probability distribution of the 

parameters. The off-diagonal scatterplots represent the pairwise correlations in the MCMC 

drawing. 
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